

Available online at www.sciencedirect.com



Journal of Sound and Vibration 266 (2003) 912-918

JOURNAL OF SOUND AND VIBRATION

www.elsevier.com/locate/jsvi

Letter to the Editor

# On the vibration analysis of rectangular clamped plates using the virtual work principle

Jorge P. Arenas\*

Institute of Acoustics, Universidad Austral de Chile, P.O. Box 567, Valdivia, Chile Received 3 December 2002; accepted 14 December 2002

# 1. Introduction

Considerable attention has been paid to the solution of the vibration problems of rectangular plates. In recent years with the practical application of active sound and vibration control, several studies have been devoted to plate response subject to different kinds of excitation and with various boundary conditions. The solution for simply supported plates is easy to obtain. It is much more difficult to obtain solutions for other boundary conditions. In addition, there is a great motivation to develop techniques for rapid, global inspection of vibrating structures. Classical methods to find the surface response of a plate with complex boundary conditions include the superposition and Ritz methods using trial polynomials and trigonometric functions. A large amount of information has been compiled by Leissa [1,2]. These methods require the solution of simultaneous equations or high order matrices, making the calculations of sound power radiated by vibrating structures even more difficult. An approach using the virtual work principle has been extensively used by Sung and co-workers [3-5]. This approach provides an easier methodology for calculating the surface response of a plate. It appears that the fundamentals of the method were first introduced by Vlasov [6]. A set of valuable references can be found in the comments made by Laura [7]. However, there is a relative scarcity of information in the literature for rectangular, as opposed to square, fully clamped plates. It can be concluded that an efficient method to predict the low-frequency sound radiated from a vibrating structure will require a computationally fast method to solve the vibration part of the problem combined with a method that, when possible, avoids the integration of the sound pressure field [8].

The final aim of this letter is to summarize the application of the virtual work principle to fully clamped plates, reporting the results for natural frequencies for plates of arbitrary aspect ratio and an estimate for the modal density, results that are not reported in the previous works. This can be useful in evaluating the accuracy of the method by comparing with previous numerical and experimental results reported in the literature.

\*Tel.: 56-63-221-012; fax: 56-63-221-013.

E-mail address: jparenas@uach.cl (J.P. Arenas).

# 2. Theory

For thin plate theory the wave equation for transverse vibration of an isotropic, undamped plate subjected to a concentrated load at point (x', y') is [2]

$$B\nabla^{4}\xi + \rho h \frac{\partial^{2}\xi}{\partial t^{2}} = F(t)\delta(x - x')\delta(y - y'), \qquad (1)$$

where  $\xi(x, y, t)$  is the instantaneous transverse displacement,  $\rho$  is the density of the plate, h is the plate thickness,  $B = Eh^3/12(1 - v^2)$  is the stiffness of the plate in bending, v is the Poisson ratio, E is the modulus of elasticity (Young's modulus), F(t) is the dynamic amplitude of the external force referring to unit surface area of the plate, and  $\delta(\cdot)$  is the delta function.

Now, let a rectangular plate be defined in the region  $0 \le x \le a$  and  $0 \le y \le b$  and consider the clamped–clamped boundary condition, i.e.,  $\xi = 0$  and  $\partial \xi / \partial n = 0$ , where *n* represents the normal direction from the clamped edges.

Application of the virtual work principle to Eq. (1), implies that the steady state amplitude response  $\xi_0(x, y)$  of the plate subjected to a harmonic point force of amplitude  $F_0$  and frequency  $\omega$  can be expressed as [3]

$$\xi_0(x,y) = F_0 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\Psi_{mn}(x,y)\Psi_{mn}(x',y')}{B(I_1I_2 + 2I_3I_4 + I_5I_6) - \rho_s \omega^2 I_2 I_6},$$
(2)

where the shape functions are decomposed in the form of the product

$$\Psi_{mn}(x,y) = \vartheta_m(x)\zeta_n(y), \tag{3}$$

 $\rho_s$  is the surface density of the plate, and

$$I_{1} = \int_{0}^{a} \vartheta_{m}^{'''} \vartheta_{m} \, \mathrm{d}x, \quad I_{2} = \int_{0}^{b} \zeta_{n}^{2} \, \mathrm{d}y, \quad I_{3} = \int_{0}^{a} \vartheta_{m}^{''} \vartheta_{m} \, \mathrm{d}x,$$
  

$$I_{4} = \int_{0}^{b} \zeta_{n}^{''} \zeta_{n} \, \mathrm{d}y, \quad I_{5} = \int_{0}^{b} \zeta_{n}^{''''} \zeta_{n} \, \mathrm{d}y, \quad I_{6} = \int_{0}^{a} \vartheta_{m}^{2} \, \mathrm{d}x.$$
(4)

The eigenfunctions  $\vartheta_m(x)$  and  $\zeta_n(y)$  can be arbitrarily chosen as long as they are *quasi-orthogonal* and both of them satisfy the boundary condition. Eq. (2) shows that the natural frequencies are given by

$$\omega_{mn} = \sqrt{\frac{B}{\rho_s}} \sqrt{\frac{I_1 I_2 + 2I_3 I_4 + I_5 I_6}{I_2 I_6}}.$$
(5)

### 2.1. Solution for a clamped–clamped rectangular plate

Sung and co-workers [3–5] have used an approach for the calculation of the vibration distribution and natural frequencies of a clamped–clamped plate. For this, they define the functions  $\mathcal{J}(s) = \cosh(s) - \cos(s)$  and  $\mathcal{H}(s) = \sinh(s) - \sin(s)$ . Then, the eigenfunctions  $\vartheta_m(x)$  and

 $\zeta_n(y)$  can be defined as

$$\vartheta_m(x) = \mathscr{J}(\beta_m x/a) - \frac{\mathscr{J}(\beta_m)}{\mathscr{H}(\beta_m)} \mathscr{H}(\beta_m x/a),$$
  
$$\zeta_n(y) = \mathscr{J}(\beta_n y/b) - \frac{\mathscr{J}(\beta_n)}{\mathscr{H}(\beta_n)} \mathscr{H}(\beta_n y/b),$$
 (6)

where  $\beta_m$  and  $\beta_n$  are the roots for the equation  $\cosh(\beta)\cos(\beta) = 1$ . It is noticed that for large values of the integer *i* then  $\beta_i \rightarrow (2i+1)\pi/2$ . In an earlier work Crocker [9] used a similar approach.

Sung and co-workers did not present explicit formulae for a clamped–clamped plate. Therefore, after integration of Eq. (4) it is useful to define

$$\mathcal{Q}_{i} = \frac{1}{4}(1 + \mathcal{D}_{i}^{2})\sinh(2\beta_{i}) + \sinh(\beta_{i})[2\mathcal{D}_{i}\sin(\beta_{i}) - (1 - \mathcal{D}_{i}^{2})\cos(\beta_{i})] - (1 + \mathcal{D}_{i}^{2})\sin(\beta_{i})\cosh(\beta_{i}) + \frac{1}{2}(1 - \mathcal{D}_{i}^{2})\sin(\beta_{i})\cos(\beta_{i}) + \beta_{i} - \frac{1}{2}\mathcal{D}_{i}[1 + \cosh(2\beta_{i})] + \mathcal{D}_{i}\cos^{2}(\beta_{i}),$$
(7)

and

$$\mathcal{R}_{i} = \frac{1}{4}(1 + \mathcal{D}_{i}^{2})\sinh(2\beta_{i}) - \frac{1}{2}\mathcal{D}_{i}\cosh(2\beta_{i}) - \frac{1}{2}(1 - \mathcal{D}_{i}^{2})\sin(\beta_{i})\cos(\beta_{i}) - \mathcal{D}_{i}\cos^{2}(\beta_{i}) - \mathcal{D}_{i}^{2}\beta_{i} + \frac{3}{2}\mathcal{D}_{i},$$
(8)

where  $\mathcal{D}_i = \mathcal{J}(\beta_i)/\mathcal{H}(\beta_i)$ . Now, the following products can be calculated:

$$I_2 I_6 = \frac{ab}{\beta_m \beta_n} \mathcal{Q}_m \mathcal{Q}_n \quad \text{and} \quad I_3 I_4 = \frac{\beta_m \beta_n}{ab} \mathcal{R}_m \mathcal{R}_n.$$
(9)

It is observed that  $I_1 = I_6(\beta_m/a)^4$  and  $I_5 = I_2(\beta_n/b)^4$ . Therefore, the natural frequencies for a rectangular clamped-clamped plate are given by

$$\omega_{mn} = \sqrt{\frac{B}{\rho_s}} \sqrt{\left(\frac{\beta_m}{a}\right)^4 + \left(\frac{\beta_n}{b}\right)^4 + 2\left(\frac{\beta_m\beta_n}{ab}\right)^2 \frac{\mathscr{R}_m\mathscr{R}_n}{\mathscr{Q}_m\mathscr{Q}_n}}.$$
(10)

#### 2.2. Natural frequencies and modal density

Numerical results for the dimensionless frequency parameter  $\lambda_{mn} = \omega_{mn}a^2\sqrt{\rho_s/B}$  were computed using Eq. (10) for rectangular plates of arbitrary a/b ratio. These results are summarized in Table 1. Double-precision arithmetic was used in the computations. Comparing the values presented in Table 1 with the numerical results presented in the classical literature [1,2,10,11] it is observed that they compare favorably with more sophisticated and accurate methods. Importantly, comparing the values shown in Table 1 with the available experimental results presented by other authors [12], it can be seen that the differences in the calculations for the natural frequencies using Eq. (10) do not exceed 2%. In order to obtain better approximations it could be suggested to apply some weighting constant to the overestimated values given by Eq. (10). However, it has to be noticed the limitations of the experimental methods. Most of the classical theories have been developed assuming light fluid loading, so that the plate response is not affected by the surrounding environment, which acts as added mass and also provides radiation damping. Loading by fluid significantly lowers the natural frequencies of flat plates, the

914

Table 1 Values of the dimensionless frequency parameter  $\lambda_{mn} = \omega_{mn} a^2 \sqrt{\rho_s/B}$  for a fully clamped rectangular plate of arbitrary a/b ratio

| т | п | Aspect ratio a/b |          |          |          |          |          |          |          |          |          |
|---|---|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   |   | 0.1              | 0.2      | 0.3      | 0.4      | 0.5      | 0.6      | 0.7      | 0.8      | 0.9      | 1.0      |
| 1 | 1 | 22.4419          | 22.6599  | 23.0621  | 23.7026  | 24.6480  | 25.9694  | 27.7322  | 29.9888  | 32.7747  | 36.1087  |
|   | 2 | 22.6335          | 23.4941  | 25.1664  | 27.9146  | 31.9618  | 37.4354  | 44.3734  | 52.7604  | 62.5608  | 73.7372  |
|   | 3 | 22.9426          | 24.9258  | 28.9480  | 35.5549  | 44.9729  | 57.1935  | 72.1298  | 89.6963  | 109.8289 | 132.4831 |
|   | 4 | 23.3833          | 27.0804  | 34.6999  | 46.8896  | 63.6595  | 84.8361  | 110.2715 | 139.8698 | 173.5726 | 211.3440 |
|   | 5 | 23.9674          | 30.0501  | 42.5109  | 61.8203  | 87.7238  | 119.9624 | 158.3821 | 202.8982 | 253.4637 | 310.0511 |
|   | 6 | 24.7592          | 34.0446  | 52.5793  | 80.4547  | 117.2381 | 162.6589 | 216.5817 | 278.9382 | 349.6918 | 428.8221 |
| 2 | 1 | 61.7650          | 62.0456  | 62.5265  | 63.2269  | 64.1724  | 65.3936  | 66.9248  | 68.8021  | 71.0616  | 73.7372  |
|   | 2 | 62.0188          | 63.0815  | 64.9312  | 67.6720  | 71.4252  | 76.3107  | 82.4316  | 89.8657  | 98.6632  | 108.8499 |
|   | 3 | 62.4187          | 64.7402  | 68.8605  | 75.0681  | 83.6327  | 94.7485  | 108.5206 | 124.9831 | 144.1270 | 165.9226 |
|   | 4 | 62.9727          | 67.0788  | 74.4940  | 85.7589  | 101.2462 | 121.1171 | 145.3876 | 174.0072 | 206.9086 | 244.0295 |
|   | 5 | 63.6835          | 70.1336  | 81.9379  | 99.8784  | 124.3104 | 155.2695 | 192.6628 | 236.3780 | 286.3212 | 342.4226 |
|   | 6 | 64.6279          | 74.1964  | 91.7307  | 118.1030 | 153.5158 | 197.8604 | 250.9752 | 312.7283 | 383.0274 | 461.8103 |
| 3 | 1 | 121.0042         | 121.3086 | 121.8224 | 122.5554 | 123.5205 | 124.7341 | 126.2152 | 127.9850 | 130.0663 | 132.4831 |
|   | 2 | 121.2811         | 122.4258 | 124.3715 | 127.1710 | 130.8917 | 135.6092 | 141.4014 | 148.3422 | 156.4978 | 165.9226 |
|   | 3 | 121.7158         | 124.1918 | 128.4400 | 134.6185 | 142.9067 | 153.4771 | 166.4747 | 182.0060 | 200.1383 | 220.9063 |
|   | 4 | 122.3153         | 126.6459 | 134.1488 | 145.1578 | 159.9983 | 178.9224 | 202.0875 | 229.5671 | 261.3756 | 297.4941 |
|   | 5 | 123.0803         | 129.8041 | 141.5611 | 158.9179 | 182.3292 | 212.0596 | 248.2086 | 290.7734 | 339.7038 | 394.9359 |
|   | 6 | 124.0938         | 133.9883 | 151.3420 | 176.9099 | 211.1674 | 254.2950 | 306.2926 | 367.0857 | 436.5845 | 514.7084 |
| 4 | 1 | 199.9652         | 200.2835 | 200.8179 | 201.5741 | 202.5600 | 203.7856 | 205.2626 | 207.0045 | 209.0262 | 211.3440 |
|   | 2 | 200.2554         | 201.4498 | 203.4622 | 206.3242 | 210.0769 | 214.7693 | 220.4553 | 227.1909 | 235.0315 | 244.0295 |
|   | 3 | 200.7104         | 203.2851 | 207.6461 | 213.8893 | 222.1322 | 232.5018 | 245.1219 | 260.1031 | 277.5372 | 297.4941 |
|   | 4 | 201.3371         | 205.8228 | 213.4639 | 224.4720 | 239.0839 | 257.5238 | 279.9770 | 306.5780 | 337.4113 | 372.5196 |
|   | 5 | 202.1353         | 209.0700 | 220.9513 | 238.1619 | 261.0822 | 290.0181 | 325.1731 | 366.6544 | 414.4982 | 468.6958 |
|   | 6 | 203.1922         | 213.3671 | 230.8357 | 256.1429 | 289.7556 | 331.9795 | 382.9631 | 442.7434 | 511.2958 | 588.5685 |
| 5 | 1 | 298.6644         | 298.9917 | 299.5398 | 300.3124 | 301.3148 | 302.5537 | 304.0370 | 305.7739 | 307.7749 | 310.0511 |
|   | 2 | 298.9631         | 300.1900 | 302.2491 | 305.1607 | 308.9526 | 313.6582 | 319.3159 | 325.9670 | 333.6547 | 342.4226 |
|   | 3 | 299.4313         | 302.0723 | 306.5187 | 312.8339 | 321.0987 | 331.4054 | 343.8511 | 358.5310 | 375.5334 | 394.9359 |
|   | 4 | 300.0756         | 304.6690 | 312.4302 | 323.5018 | 338.0548 | 356.2680 | 378.3097 | 404.3243 | 434.4257 | 468.6958 |
|   | 5 | 300.8957         | 307.9831 | 320.0039 | 337.2234 | 359.9359 | 388.4169 | 422.8922 | 463.5243 | 510.4145 | 563.6139 |
|   | 6 | 301.9814         | 312.3675 | 330.0054 | 355.2833 | 388.5900 | 430.2432 | 480.4609 | 539.3654 | 607.0060 | 683.3838 |
| 6 | 1 | 417.1048         | 417.4475 | 418.0203 | 418.8259 | 419.8681 | 421.1514 | 422.6815 | 424.4650 | 426.5091 | 428.8221 |
|   | 2 | 417.4177         | 418.7013 | 420.8499 | 423.8775 | 427.8025 | 432.6482 | 438.4412 | 445.2111 | 452.9898 | 461.8103 |
|   | 3 | 417.9079         | 420.6682 | 425.2976 | 431.8375 | 440.3423 | 450.8759 | 463.5080 | 478.3108 | 495.3552 | 514.7084 |
|   | 4 | 418.5824         | 423.3778 | 431.4369 | 442.8520 | 457.7387 | 476.2243 | 498.4374 | 524.4983 | 554.5129 | 588.5685 |
|   | 5 | 419.4403         | 426.8299 | 439.2756 | 456.9493 | 480.0536 | 508.7947 | 543.3609 | 583.9084 | 630.5556 | 683.3838 |
|   | 6 | 420.5760         | 431.3948 | 449.6211 | 475.5002 | 509.2995 | 551.2656 | 601.5970 | 660.4348 | 727.8661 | 803.9348 |



Fig. 1. Number of modes as a function of the dimensionless frequency parameter  $\lambda$  for both clamped and simply supported plate of a/b = 0.5.

effect decreasing with increasing mode order. In addition, differences between the numerical and experimental approaches are due to imperfections in the experimental fixture, the damping which couples the modes (non-proportional damping), and some non-linearities, among others.

On the other hand, the modal density is often used to study the sound radiation from a plate, in particular when statistical methods are used [13]. As an example, Fig. 1 shows the results for the cumulative mode count,  $N(\lambda)$ , as a function of the dimensionless frequency parameter for a fully clamped plate of aspect ratio a/b = 0.5, computed using Eq. (10). The results for an equivalent simply supported plate are plotted for comparison.  $N(\lambda)$  represents the number of modes which can be excited in the range from zero up to  $\lambda$ . It can be observed in Fig. 1 that the number of modes for the clamped plate can be approximated by

$$N(\lambda) \approx \frac{b}{4\pi a} \lambda + C, \tag{11}$$

where C is a real number that depends on the aspect ratio. The average modal density  $n(\lambda)$ , which is the number of modes that can be excited in a narrow frequency band, is obtained from the derivative of Eq. (11). Then

$$n(\lambda) = \frac{\mathrm{d}N}{\mathrm{d}\lambda} \approx \frac{b}{4\pi a}.$$
 (12)

Eq. (12) is exactly the expression for the modal density of a simply supported plate, which is independent of frequency. Eq. (12) confirms that the modal density depends not too strongly on

the boundary conditions. However, Eq. (11) is a good approximation for plates of not too high aspect ratio and for  $\lambda > 2\lambda_{11}$ .

#### 2.3. Velocity response to multi-point force excitation of the plate

Most of the practical applications which use active control of vibration are developed by placing piezoceramic actuators on the surface of the plate and by applying point forces with electromagnetic shakers. In such cases, a matrix equation is very useful in predicting the velocity response of the plate to these forces. In addition, the response of the plate to a point moment can be treated as two point forces  $F_1$  at  $(x_1, y_1)$  and  $F_2$  at  $(x_2, y_2)$  with the same magnitude separated by a small distance  $\Delta = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$  but oriented

in opposite directions [4]. Multi-point excitation can be found also in the case of a machine installed on a plate with several mounting positions [14].

For multi-point force excitation (several forces of amplitude  $F_1, F_2, ..., F_k$  applied to a set of corresponding co-ordinates  $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$ ) on the plate, the total displacement of the plate is obtained using the superposition of the responses induced by each of the forces, since the system is assumed to be linear. Then, including the response of modes up to the mode (M, N) the total displacement is

$$\xi_0(x,y) = \frac{1}{\rho_s ab} \sum_{i=1}^k \sum_{m=1}^M \sum_{n=1}^N \frac{F_i \Psi_{mn}(x,y) \Psi_{mn}(x_i,y_i)}{\gamma(\omega_{mn}^2 - \omega^2)},$$
(13)

where  $\omega_{mn}$  is computed using Eq. (10), and  $\gamma$  is

$$\gamma = \frac{1}{ab} \int_0^b \int_0^a \Psi_{mn}^2(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$
(14)

Now, it is useful to write the velocity V on the plate for any co-ordinate point (x, y) in matrix form. Let **F** be a  $k \times k$  complex diagonal matrix of forces defined as  $\mathbf{F} = \text{diag}(F_1, F_2, ..., F_k)$ . Then, the velocity can be expressed as

$$V(x, y, \omega, t) = \frac{\omega}{2\pi\kappa} \operatorname{trace}(\mathbf{F}\mathbf{V}^{\mathsf{T}}\mathbf{\Omega}\mathbf{P}) \exp\left(\omega t + \frac{\pi}{2}\right), \tag{15}$$

where  $\kappa = 2\pi \rho_s ab\gamma$ , V is a  $M \times k$  matrix, P is a  $N \times k$  matrix and  $\Omega$  is a  $M \times N$  matrix. The entries for the matrices in Eq. (15) are

$$V_{mk} = \vartheta_m(x)\vartheta_n(x_k), \quad P_{nk} = \zeta_n(y)\zeta_n(y_k), \quad \Omega_{mn} = 4\pi^2/(\omega_{mn}^2 - \omega^2).$$
(16)

# 3. Concluding remarks

The use of the virtual work principle produces good approximations for the natural frequencies and modal density of a fully clamped rectangular plate to within acceptable limits, at least for acoustical requirements. The method summarized in the present letter is very useful for fast calculations of the sound radiation characteristics of fully clamped plates, where the velocity distribution on the plate is needed, since it does not require the solution of simultaneous equations. This is particularly true when the computational cost of formulating and solving the system of equations to predict the sound radiation can become prohibitive. In addition, the method avoids the symmetric eigenvalue problem that results when the Rayleigh–Ritz, or other more sophisticated method is used. Moreover, all the formulae are relatively simple to convert into a computational code when numerical software approaches are used.

The theory may be extended to other boundary conditions simply by selecting quasi-orthogonal shape functions that satisfy the boundary conditions. Further work can be carried out to estimate the sound radiation from free plates and for mixed boundary conditions, by combining the method described in this article with the surface resistance matrix [15]. However, the lack of experimental results for the vibration of rectangular plates of arbitrary aspect ratio still remains.

# References

- [1] A.W. Leissa, The free vibration of rectangular plates, Journal of Sound and Vibration 31 (1973) 257–293.
- [2] A.W. Leissa, Vibration of Plates, Acoustical Society of America, New York, 1993.
- [3] C.-C. Sung, C.T. Jan, Active control of structurally radiated sound from plates, Journal of the Acoustical Society of America 102 (1997) 370–381.
- [4] C.-C. Sung, J.T. Jan, The response of and sound power radiated by a clamped rectangular plate, Journal of Sound and Vibration 207 (1997) 301–317.
- [5] C.-C. Sung, C.-Y. Chiu, Control of sound transmission trough thin plate, Journal of Sound and Vibration 218 (1998) 605–618.
- [6] V.Z. Vlasov, Some new problems on shell and thin structures, National Advisory Committee for Aeronautics, Naca Tech. Memo No. 1204, 1949.
- [7] P.A.A. Laura, Comments on "The response of and sound power radiated by a clamped rectangular plate", Journal of Sound and Vibration 218 (1998) 341–343.
- [8] N. Atalla, R.J. Bernhard, Review of numerical solutions for low-frequency structural-acoustic problems, Applied Acoustics 43 (1994) 271–294.
- [9] M.J. Crocker, Multimode response of panels to normal and to traveling sonic booms, Journal of Acoustical Society of America 42 (1967) 1070–1079.
- [10] S.W. Kang, J.M. Lee, Free vibration analysis of arbitrarily shaped plates with clamped edges using wave-type functions, Journal of Sound and Vibration 242 (2001) 9–26.
- [11] G.K. Baranovskii, I.G. Kadomtsev, Flexural vibrations of a rigidly clamped rectangular plate, Mechanics of Solids 35 (2000) 143–149.
- [12] C.R. Hazell, A.K. Mitchell, Experimental eigenvalues and mode shapes for flat clamped plates, Experimental Mechanics 26 (1986) 337–344.
- [13] M.J. Crocker, A.J. Price, Sound transmission using statistical energy analysis, Journal of Sound and Vibration 9 (1969) 469–486.
- [14] J.S. Tao, G.R. Liu, K.Y. Lam, Sound radiation of a thin infinite plate in light and heavy fluids subject to multipoint excitation, Applied Acoustics 62 (2001) 573–587.
- [15] J.P. Arenas, M.J. Crocker, Properties of the resistance matrix and applications in noise control, Proceedings of Eight International Congress on Sound and Vibration, Hong Kong, 2001, pp. 2599–2606.